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EXECUTIVE SUMMARY 
 
Malaria has been with the human race since ancient times. Nowadays, most of the 
tropical and subtropical countries are endemic with malaria. There are approximately 
300–500 million cases worldwide and at least 1 million deaths in any given year. The 
falciparum malaria, which has become drug resistant in most malarious areas, may 
become malignant and fatal without supportive care. The vivax and malariae malaria, 
although less virulent, may relapse and prolong morbidity. Before any effective 
vaccines become available, approximately 40% of the world’s population is at risk.   
 
Malaria transmission depends on the diverse factors that influence the vectors, 
parasites, human hosts, and the interactions among them.  These factors may include, 
among others, meteorological and environmental condition, the innate and adapted 
immunity of the human hosts, public health system, housing standards, vector control, 
road construction, irrigation projects, population movements, and war-like conditions.  
The most apparent determinants are the meteorological and environmental factors, 
such as rainfall, temperature, humidity, and vegetation.  When other factors remain 
more or less constant, the meteorological and environmental conditions can indeed be 
considered the driving factors.  Remote sensing has been used in recent years for 
developing malaria early warning systems, particularly for Africa.  For the Greater 
Mekong Subregion, an epicenter of multi-drug resistant malaria, there have been few 
studies to examine the dependency of malaria cases on these factors.  
 
In an endemic area, the local adult population may acquire sufficient immunity after 
repeated infections. The disease could be deadly, however, to young children, 
pregnant women, those with depressed immunoresponse, and people new to the area. 
Because malaria is virtually nonexistent in the U.S., Americans traveling abroad and 
U.S. oversea forces are particularly vulnerable.  
 
The goal of the NASA Malaria Modeling and Surveillance (MMS) project is to use 
NASA data, model outputs, and analytical and modeling expertise to enhance 
partners’ decision support capabilities for malaria risk assessment and control.  The 
technical objectives of the MMS project are: 1) identification of potential larval 
habitats for major malaria vector species;  2) estimation of current and prediction of 
future malaria risks; and  3) estimation of spatio-temporal transmission characteristics 
for cost-effective malaria control. 
 
The Global Situational Awareness Tool (GSAT) is a system developed by the Air 
Force Special Operations Command (AFSOC) for assessing environmental and health 
issues of concerns for deployed U.S. forces.  GSAT is a computerized set of linkable 
databases with an intelligent, user-friendly interface.  It is designed as a knowledge or 
rule based system.  The knowledge-based rules will be written by a group of experts 
to achieve outcomes as if human experts are performing similar analysis.  The NASA 
and AFSOC teams first met in February, 2004 at the Tri-Service Entomological 
Conference in Jacksonville, Florida. It was thought that the two projects had 
compatible goals and that the GSAT might benefit from the MMS project’s malaria 
risk assessments. A subsequent meeting was held at Stennis Space Center in August, 
2004.  An Evaluation Report was released in July 2005.  The results from the MMS 
Project will be an essential element in deriving the rules for GSAT.   
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Neural network is a vital part of machine or artificial intelligence, which is a 
discipline to study machine’s ability for learning and adaptation, and exhibition of 
intelligent behaviors.  We have shown that neural network techniques are a useful 
approach for modeling the dependency of malaria cases on meteorological and 
environmental parameters.   
 
Thailand has a long border—nearly 3,200 km over land—with Myanmar, Laos, 
Cambodia, and Malaysia as its neighboring countries.  Attracted by economic 
opportunities and escaping from military conflicts, significant migrant and transient 
populations have come into Thailand.  Due to the limited accessibility of health care, 
these populations expand the human reservoir for malaria transmission and escalate 
the endemicity among the native Thai population.   The movement of migrant and 
transient populations around the border is an important contextual determinant that 
contributes to malaria transmission.  In addition, it confounds the complexity for the 
prediction of malaria transmission intensity based on meteorological and 
environmental parameters. 
 
We have used surface observed and satellite measured data to examine the 
dependency of malaria transmissions on meteorological and environmental factors.  
The malaria data are in provincial resolution.  Malaria transmission is known to be 
spatially heterogeneous.  In spite of the coarse resolution of the malaria data, we have 
uncovered a reasonable degree of dependency on the meteorological and 
environmental  parameters.  Based on the dependency, we can assess the current and 
future malaria risks.   
 
With the simplest neural network architecture, the average training accuracy is 
approximately 73% among the three leading malarious provinces.  More complex 
architectures will result in higher training accuracy.  The average hindcasting 
accuracy is approximately 63% using the simplest (hence most robust) architecture.  It 
should be noted that the training and hindcasting accuracy are not meant to be 100%, 
because the meteorological and environmental parameters only account for part of the 
factors that affect malaria transmissions.  There is reason to believe that we can obtain 
a more precise meteorological and environmental association by using malaria data at 
higher resolution.    
 
The risk assessments from the MMS project will allow the U.S. overseas forces better 
prepared in malaria prevention and in responding to malaria morbidity.  In the Armed 
Forces, there are other Decision Support Systems similar to GSAT that provide risk 
assessments on infectious diseases.  These systems exchange information with one 
another.  At least two other systems use malaria risk assessments information.  The 
beneficial returns of NASA data and results will be multiplied as the results from the 
MMS project are shared with other Decision Support Systems. 
 
During peacetime or wartime, U.S. overseas forces work with the local public health 
organizations to reduce disease risks among the general populations.  The outcome of 
the NASA MMS Project will therefore help reduce the morbidity and mortality 
among the local populations.  The risk assessments will also facilitate more targeted 
insecticide and larvicide applications, and therefore reduce the potential damages to 
the environment and the risk of insecticide resistance. 
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1.  INTRODUCTION 
 
Malaria has been with the human race since ancient times. Nowadays, most of the 
tropical and subtropical countries are endemic with malaria. There are approximately 
300–500 million cases worldwide and at least 1 million deaths in any given year. The 
falciparum malaria, which has become drug resistant in most malarious areas, may 
become malignant and fatal without supportive care. The vivax and malariae malaria, 
although less virulent, may relapse and prolong morbidity. The advances of 
biomedical research, and the completion of genomic mappings for Plasmodium 
falciparum (Gardner et al., 2002) and Anopheles gambiae (Holt et al., 2002) give 
hope for a reduced malaria burden in the future. Before any effective vaccines become 
available, however, approximately 40% of the world’s population is at risk.   
 
In an endemic area, the local adult population may acquire sufficient immunity after 
repeated infections. The disease could be deadly, however, to young children, 
pregnant women, those with depressed immunoresponse, and people new to the area. 
Because malaria is virtually nonexistent in the U.S., Americans traveling abroad and 
U.S. oversea forces are particularly vulnerable. For an immunologically naïve 
population arriving in an endemic region, preventive measures can be taken to 
minimize the impacts if malaria risks are known beforehand. Countermeasures can 
also be more effectively used to prevent outbreaks and contain malaria epidemics if 
such events can be forecasted.  Since malaria transmissions are influenced by climatic 
and environmental factors, remote sensing can provide the essential information for 
malaria prevention and control. 
 
The goal of the NASA Malaria Modeling and Surveillance (MMS) project is to use 
NASA data, model outputs, and analytical and modeling expertise to enhance 
partners’ decision support capabilities for malaria risk assessment and control.  The 
technical objectives of the MMS project are: 1) identification of potential larval 
habitats for major malaria vector species;  2) estimation of current and prediction of 
future malaria risks; and  3) estimation of spatio-temporal transmission characteristics 
for cost-effective malaria control. 
 
The Global Situational Awareness Tool (GSAT) is a system developed by the Air 
Force Special Operations Command (AFSOC) for assessing environmental and health 
issues of concerns for deployed U.S. forces.  GSAT is a computerized set of linkable 
databases with an intelligent, user-friendly interface.  It is designed as a knowledge or 
rule based system.  The knowledge-based rules will be written by a group of experts 
to achieve outcomes as if human experts are performing similar analysis.  The NASA 
and AFSOC teams first met in February, 2004 at the Tri-Service Entomological 
Conference in Jacksonville, Florida. It was thought that the two projects had 
compatible goals and that the GSAT might benefit from the MMS project’s malaria 
risk assessments. A subsequent meeting was held at Stennis Space Center in August, 
2004.  An Evaluation Report was released in July 2005.  The results from the MMS 
Project will be an essential element in deriving the rules.  There are also similar 
Decision Support Systems in DoD and in the branches of the Armed Forces.  These 
systems may potentially benefit from the output of the MMS project as well. 
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System engineering process is followed in enhancing GSAT with results from the 
MMS project.  The Evaluation Phase resulted in the Evaluation Report that assesses 
the feasibility of enhancing the GSAT with results from the MMS project.  The 
Verification and Validation (V&V) Phase examines the performance characteristics of 
the data, techniques, and models used in the MMS project and assessing their 
usefulness to GSAT.  The Benchmarking Phase will measure the impact of the 
enhancement to GSAT. 
 
Techniques developed for the first MMS objective is geographic-dependent, because 
they are driven by the ecology of the major mosquito species prevalent in that region.  
For example, Anopheles sinensis is responsible for the re-emerging of vivax malaria 
in Korea (Yeom et al., 2005).  Its main larval habitats are irrigation and drainage 
ditches along rice fields.  We have developed textural-contextual classification 
techniques to detect such potential larval habitats (Kiang et al, 2003).   
 
This report addresses the V&V for the second objective – estimation of current and 
prediction of future malaria risks.  We have used neural network to model 
meteorological and environmental dependency of malaria transmission in Thailand 
provinces.  The development of the third technical objective on estimation of spatio-
temporal transmission dynamic is on going.  The V&V report for the third objective 
will be issued in FY07. 
 

2.  SUMMARY OF MMS-GSAT EVALUATION 
 
The goals of AFSOC’s GSAT and NASA’s MMS Projects are clearly compatible.   In 
the Evaluation Report, we concluded that the NASA data, results, and the output from 
MMS will be able to enhance GSAT’s capability. 
 
The NASA data and results to be provided to GSAT include: 1) the satellite derived 
meteorological and environmental parameters; 2) malaria risk maps for selected 
regions of the world that are jointly agreed upon by AFSOC and NASA teams; and 3) 
potential malaria vectors’ larval habitats for selected areas.  The NASA team will 
further develop its malaria modeling capabilities to assess malaria risks for regions of 
interest to AFSOC, while the AFSOC team will integrate malaria risks and NASA 
Earth-Sun science data into GSAT.  The GSAT will also be tested by AFSOC 18th 
Flight Test Squadron and in real military exercises.   
 
When GSAT is fielded, the Air Force will gain a computerized environmental and 
medical planning capability.  The combined capabilities of the malaria assessments 
and GSAT will provide the U.S. Air Force, Department of Defense, and its partners 
with a decision support tool valuable to U.S. military and civilian sectors.  Because 
U.S. oversea forces generally assist the local public health organizations in disease 
prevention and control, the enhanced GSAT will also benefit the local populations. 
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3.  DESIGN AND IMPLEMENTATION 
 
In this section, we will describe the data and methods that are used for modelling 
malaria risks.  The meteorological and environmental parameters relevant to malaria 
transmissions are discussed first.  In addition, epidemiological data are also needed in 
modelling.  We will discuss how epidemiological data were obtained and their 
characteristics. 
 
3.1  Environmental Determinants for Malaria Transmissions 
 
The transmission of malaria is influenced by a myriad of factors.  Environmental, 
climatic, social, and economic, public health, political, and warlike conditions have all 
been shown to contribute to malaria occurrence and outbreaks.  Among these, the 
environmental conditions, especially rainfall, appears to be the most recognizable 
determinant.  The intensity of malaria transmissions has long been associated with 
rainy seasons in human experience.  The excessive rain or drought brought about by 
the climatic events like El Niño Southern Oscillation (ENSO) have also been shown 
to enhance the occurrence of malaria epidemics in the affected regions (Bouma & van 
der Kaay, 1996; Poveda et al., 2001; Githeko & Ndegwa, 2001; Gagnon et al., 2002; 
Kovats et al., 2003).  Remote sensing is considered an important technology for 
predicting, preventing, and containing malaria epidemics (MARA/ARMA, 1998; 
WHO, 2001; WHO, 2004a; WHO, 2004b) because the environmental variables can be 
remotely sensed from satellites, and the likelihood of ENSO events may also be 
forecasted using satellite measured parameters.  In recent years, researchers have used 
various methods and techniques that involves meteorological data or remotely sensed 
measurements for forecasting malaria epidemics, in particular for Africa (Thomson et 
al., 1996; Hay et al., 1998; Kleinschmidt et al., 2000; Rogers et al., 2002; Nalim et 
al., 2002; Small et al., 2003; Abeku et al., 2004; Teklehaimanot et al., 2004a; 
Teklehaimanot et al., 2004b; Omumbo et al., 2004; Thomson et al., 2006).  Some of 
the forecasting techniques may have already been used in operations (Grover-Kopec 
et al., 2005).  The advances in Geographic Information System (GIS) have also 
helped the integration of remote sensing measurements, epidemiological data, other 
information important to malaria transmission, and modeling results (Albert et al., 
2000).  
 
Since rainfall provides vector breeding sites and prolongs vector life span by 
increasing humidity, precipitation or precipitation anomalies is the attribute most 
frequently used for predicting malaria epidemics.  It has also been shown, however, 
that rainfall or the lack of it has a complex effect on malaria transmission for various 
parts of the world (Kovats et al., 2003).  For example, although moderate rainfall may 
promote malaria transmission, intense and prolonged rainfall may flush away larval 
habitats and thus reduce transmissions.  Similarly, lack of rainfall does not always 
reduce larval populations.  On the contrary, lack of rainfall may create new habitats, 
such as pools and puddles, in some regions and therefore increase larval population.  
In addition, droughts may be deleterious to predator populations or may cause human 
populations with no immunity to move to areas endemic with malaria (Kovats et al., 
2003).  These factors may indirectly increase overall malaria transmissions.  For 
regions where regular, yearly malaria infections contribute to partial immunity, a 
reduced transmission in certain years may increase the vulnerability in later years. 
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Another meteorological variable that is often used for predicting malaria transmission 
is temperature.  Warmer temperature hastens larval and vector development and 
therefore increases the rate of vector production (Craig et al., 1999).  Temperature 
shortens the sporogonic cycle to allow vectors a longer period to transmit malaria.  
Warmer air also holds more moisture and therefore enhances mosquito survivorship. 
 
The range of rainfall and temperature needed to maintain stable malaria transmission 
is called climate suitability (MARA/ARMA, 1998; Craig et al., 1999; Small et al., 
2003; Omunbo et al., 2004; Hay et al., 2004).  For example, in African regions where 
the Anopheles gambiae complex is the dominant species for transmitting falciparum 
malaria, climate suitability is associated with a temperature between 18º and 32º C 
and a rainfall exceeding 80 mm per month for at least 3 to 5 months (MARA/ARMA, 
1998; Craig et al., 1999). 
 
Naturally, climate suitability depends on the ecology of the dominant malaria vector 
species.  Therefore, it varies with geographic region (WHO & UNICEF, 2005).  
Climate suitability indicates how favorable the regional climate is for stable malaria 
transmission.  How much this potential can be materialized into malaria endemicity, 
however, depends on other contextual determinants.  Factors like socioeconomic 
conditions, public health infrastructures, herd immunity, irrigation and transportation 
projects, natural disasters, and military conflicts, have overriding effects on malaria 
transmission.  When these contextual determinants are relatively unchanged, 
environmental determinants like rainfall and temperature are indeed the essential 
predictors for estimating the intensity of malaria transmission. 
 
In the previous studies, rainfall surrogates were often used for modeling when no 
suitable remotely sensed or ground based measurements were available (Hay et al., 
1996; Thomson et al., 1996; Hay et al., 1998).  The most frequently used surrogates 
include the Cold Cloud Duration (CCD) derived from the Meteosat measurements 
(Snijders, 1991) and the Normalized Difference Vegetation Index (NDVI) derived 
from the Advanced Very High Resolution Radiometer (AVHRR) measurements.  The 
NDVI is not a measure of the precipitation at the time of the satellite overpass, but an 
increase in NDVI over nonirrigated area indicates the greening of vegetation and 
therefore implies that rainfall was recently received.  The NDVI is also good for 
estimating the level of vegetation on the ground.  It is therefore a useful indicator for 
differentiating between urban and rural areas.  Direct, space-based rainfall 
measurements capabilities started with NASA’s Tropical Rainfall Measuring Mission 
(TRMM) in 1999 (Kummerow et al., 1998).  TRMM is expected to last through 2009.  
The successor of the TRMM is the Global Precipitation Measurement (GPM) mission, 
an international collaboration involving a constellation of satellites (Flaming, 2005; 
Smith et al., 2006).  
 
Most malaria early warning capabilities developed to date are for Africa.  It is 
generally agreed that rainfall excess is the main determinants for malaria epidemics in 
lowland and the warm, semi-arid and desert-fringe areas.  For highland areas, 
temperature or temperature and rainfall together are the main predictors (Hay et al., 
2001; Thomson & Connor, 2001; Grover-Kopec et al., 2005).  The Greater Mekong 
Subregion (GMS), which consists of Thailand, Myanmar, Laos, Cambodia, Vietnam, 
and the Yunan Province of China, is an epicenter of multidrug resistant falciparum 
malaria (Kidson et al., 1999).  The Mekong Roll Back Malaria Program has identified 
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remote sensing and GIS as important elements for malaria prevention and control in 
this region (Thimasarn, 2003).   Remote sensing has been shown useful in Thailand 
for detecting potential larval habitats of malaria vectors and for estimating the 
associated malaria risks in the vicinity (Sithiprasasna et al., 2005; Zollner et al., 
2006).  Capabilities similar to those in Africa for malaria early warning are not yet 
available in the GMS.   
 
An objective of the MMS project is to examine and model the meteorological and 
environmental dependency of malaria transmission in Thailand at provincial level.  
Because some satellite measurements were not yet available during the years in which 
the malaria epidemiological data were taken, meteorological data based on both 
ground observed and satellite sensed measurements are used.  Therefore, a byproduct 
of this analysis is the feasibility of using meteorological and environmental data of 
mixed origins and resolution to estimate malaria endemicity at provincial resolution. 
 

3.2 Epidemiological Data 
 
All four human malaria species are present in Thailand.  There are approximately 
equal number of Plasmodium falciparum and P. vivax malaria cases.  Together, they 
account for approximately 99% of all the cases.  P. malariae malaria cases are less 
than 1%, and P. ovale malaria is rare (Thai Ministry of Public Health, 2003).  
Through concerted efforts in surveillance and treatment, and prevention and control, 
malaria morbidity and mortality in Thailand has declined significantly in the last three 
decades.  The current annual parasite incidence is less than 1 per 1000 population.  
Foreign workers and migrant, displaced populations from neighboring countries 
(Myanmar, Cambodia, Laos, and Malaysia) contribute significantly to malaria 
transmission in Thailand.  Implementing positive health care policy for the non-Thai 
population in recent years has also helped lower malaria prevalence.   
 
The monthly, provincial malaria data compiled by the Epidemiology Division, 
Department of Disease Control, Thai Ministry of Public Health (MOPH) are used in 
this study.  These data are based on passive detections, which are essentially the 
confirmed malaria cases reported by hospitals and clinics.  The data do not provide 
the information on parasite species.  Annual (but not monthly) statistics with 
breakdowns into age groups and Thai or foreigner groups are also provided.  Since it 
is not known whether the cases are new cases, recrudescence, or relapses, incidence 
rate cannot be directly calculated from the compiled data. In our analysis, we use the 
total monthly provincial malaria cases data that group parasite species and Thai or 
non-Thai populations together.  Malaria data with higher spatial resolution (at district, 
village, and hamlet levels) and more details (parasite species, mixed infection, ages, 
and nationality) are archived at the Department of Disease Control.   
 
Understandably, the data only include symptomatic cases.  In Thailand, there may be 
a significant number of asymptomatic cases among repeatedly infected adults but the 
distribution may be geographically dependent (Coleman et al., 2004; Pethleart et al., 
2004).  In addition, there are an unknown number of symptomatic cases among the 
migrant and displaced populations who may not have sought or received treatments 
from public health organizations for a variety of reasons. The malaria cases used in 
the analyses therefore reflect the lower bound of the true prevalence. 
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Thailand requested Global Fund in 2002 to fight AIDS, tuberculosis, and malaria, and 
funding was started in 2004.  For some reasons MOPH stopped releasing malaria 
epidemiological data in 2003.  In addition, the quality of the data after 2000 has not 
been fully understood.  For these reasons, we choose to use the data from 1994 to 
2000. 

3.3 Meteorological and Environmental Data 
 
The malaria epidemiological data used for this analysis span from 1994 to 2000.  For 
modeling and prediction, a variety of data sources will be needed to provide the 
meteorological and environmental data for this period and beyond.  
 
Temperature and Precipitation  Air temperature and precipitation data from 1994 to 
the end of 1999 are based on the Seasonal-to-Interannual Earth Science Information 
Partner (SIESIP) data set compiled by the Center for Climate Research of the 
University of Delaware. SIESIP is one of the Earth Science Information Partner 
(ESIP) projects funded by the National Aeronautics and Space Administration 
(NASA) to compile and develop customized Earth science data sets. 
 
This data set was produced from the Global Historical Climatology Network (GHCN 
version 2) and Legates and Willmott’s station records of monthly and annual mean air 
temperature and total precipitation. Using a spherical distance-weighting algorithm, 
station averages of monthly values were interpolated to a 0.5° x 0.5° latitude-
longitude grid, with grid nodes centered on 0.25°. The number of nearby stations 
influencing grid node estimates was 20 on average. Both Digital Elevation Model-
assisted interpolation and Climatologically Aided Interpolation were employed to 
estimate the monthly fields. This data set spans the time period from 1950–1999 
(Vose et al., 1992; Easterling et al., 1996; Peterson & Vose, 1997). 
 
From the beginning of 2000, we extracted the temperature data from the Moderate 
Resolution Imaging Spectroradiometer (MODIS) data set. MODIS has 2 bands at 250 
m resolution, 5 bands at 500 m, and 29 bands at 1,000 m, with its spectral region 
ranging from visible to thermal wavelengths. MODIS is a key instrument on board the 
Terra Earth Observing System AM platform (EOS AM) and Aqua (EOS PM) 
satellites. Data from MODIS improve our understanding of global dynamics and 
processes occurring on the land, in the oceans, and in the lower atmosphere. A wide 
variety of geophysical parameters can be derived from MODIS measurements.  To be 
precise, the temperature parameter in the MODIS product is land surface temperature 
instead of air temperature.  However, the average monthly air temperature can be 
approximated by the average monthly land surface temperature, since these two 
parameters exhibit similar seasonal trend. 
 
Also, from the beginning of 2000 we extracted the precipitation data from rainfall 
data sets measured by the instruments on board the Tropical Rainfall Measuring 
Mission (TRMM) spacecraft (Kummerow et al., 1998). TRMM is a joint mission 
between NASA and the Japan Aerospace Exploration Agency designed to monitor 
and study tropical rainfall and to help our understanding of the water cycle in the 
climate system. Of the five instruments carried by TRMM, the Precipitation Radar 
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and the TRMM Microwave Imager are most directly related to rain measurements. 
The TRMM precipitation data has a resolution of approximately 5 km at nadir.   
 
When more than one data sources are used for a parameter, there may be intrinsic and 
valid differences due to the conditions under which the data were obtained.  In these 
cases, a linear transformation was performed on the second data stream to match up 
the statistical properties of the first data stream. 
 
Relative Humidity  Relative humidity data were extracted from the National Centers 
for Environmental Prediction’s (NCEP) Reanalysis Monthly Means and Other 
Derived Variables data set. The NCEP/National Center for Atmospheric Research 
(NCAR) Reanalysis Project uses a state-of-the-art analysis–forecast system to 
perform data assimilation using past data from 1948 to the present. A subset of this 
data was processed to create monthly means of a subset of the original data. These 
variables are instantaneous values at the reference time and are averages of 
instantaneous values at the four reference times—0, 6, 12, and 18 Z—over the 
averaging period. Spatial resolution of the data set is a 2.5° by 2.5° latitude/longitude 
global grid.  Alternatively, if higher spatial resolution is needed, we can compute 
relative humidity from water vapor, which is one of the geophysical parameters 
available in the MODIS atmospheric profile product (MODIS atmosphere web site). 
 
Vegetation  Vegetation plays an important role in vector breeding, feeding, and 
resting sites.  A number of vegetation indices have been used in remote sensing and 
Earth science disciplines.  The most widely used index is the Normalized Difference 
Vegetation Index (NDVI) (Tucker, 1979).  It is simply defined as the difference 
between the red and the near infrared bands normalized by twice the mean of these 
two bands.  For green vegetation, the reflectance in the red band is low because of 
chlorophyll absorption, and the reflectance in the near infra-red band is high because 
of the spongy mesophyll leave structure.  The more vigorous and denser the 
vegetation is, therefore, the higher the NDVI becomes.   
 
NDVI has also been used as a surrogate for rainfall estimate.  It is an effective 
measure for arid or semi-arid region.  For tropical regions where ample rainfall is 
normally received, vegetation index may be a less sensitive measure for estimating 
rainfall.  The mean vegetation index over a region does reflect the degree of 
urbanization or lack of vegetation.  In this sense, NDVI in a grid cell is used as an 
indicator for the mean level of vegetation present in the cell. 
 
Any satellite instrument with red and infrared bands can be used to compute NDVI.  
However, because of the difference in band definitions, spatial resolutions, and 
satellite passing time, NDVI computed from different sensors must first be calibrated 
before the NDVI from different sensors can be compared. 
 
The NDVI data are processed and distributed by the NASA Goddard Space Flight 
Center’s Distributed Active Archive Center (DAAC). These data are 8 km resolution 
monthly NDVI maximum value composite images (DAAC interdisciplinary data and 
resources web site). The original data set was produced as part of the National 
Oceanic and Atmospheric Administration (NOAA)/NASA Pathfinder Advanced Very 
High Resolution Radiometer (AVHRR) Land Program.  The data set spans July 1981 
through December 2000, with the exception of September through December 1994.  
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We use the NDVI data for 2000 and beyond from the MODIS measurements (MODIS 
atmosphere web site). 
 
A sample of the meteorological and environmental parameters used for modeling, 
including precipitation, temperature, relative humidity, and vegetation index, are 
shown in Figs. 1-4 for the four Thailand seasons.  The four Thailand seasons, 
classified according to temperature and rainfall, are cool-dry (November, December, 
and January), hot-dry (February, March, and April), early rainy (May, June, and July), 
and late rainy (August, September, and October) seasons. 
 

 
 

 
 

Figure 1. Precipitation for the four Thailand seasons (2000–2001). 
 

 
 

 
 
 

Figure 2. Surface air temperature for the four Thailand seasons (2000–2001). 
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Figure 3. Relative humidity for the four Thailand seasons (2000–2001). 
 

 

 
 

Figure 4. NDVI for the four Thailand seasons (2000–2001). 
 

 

3.4 Modeling Malaria Risks 
 
We use the neural network (NN) method to approximate the dependency of malaria 
cases on the meteorological and environmental variables.  This method has been 
successfully used in many applications, including classification, regression, time 
series analysis, and handwritten character recognition (Nelson & Illingworth, 1990).  
In this approach, the probability density of the data is not assumed to follow any 
particular functional form. Rather, the characteristics of the probability density are 
determined entirely by the distribution in the data, hence, it is a data driven approach. 
This method is most suitable for problems that are too complex to be expressed in a 
closed, analytical form. For problems in which there are hidden, implicit variables, 
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this approach is particularly suitable, as it is difficult to either specify the variables 
properly or sufficiently account for their effects mathematically. 

This method is called neural network because it resembles how biological neurons 
function (Gardner, 1993). Nodes in a neural network are analogous to neurons.  The 
connections between the nodes are analogous to synapses. The behavior of the 
activation function corresponds to the firing of a neuron. The weights of the 
connections can be trained to give the aggregate of neurons a specific functionality. A 
network may accommodate complicated geometries in multidimensional space by 
incorporating hidden layers. Without hidden layers, the neural network method will 
be equivalent to the generalized linear model. 

To train our neural network model, we feed observed or measured parameters from 
the past into the network. The input parameters may consist of meteorological, 
environmental, and other variables and the output parameter is the corresponding 
malaria cases for that specific location and time. Once trained, the network will be 
able to estimate the cases at some other time period using the parameters 
corresponding to that time period. 

The neural network used in this analysis is in the class of multi-layer perceptron 
(Rumelhart & McClelland, 1986; Haykin, 1994; Bishop, 1996).  The general network 
architecture is composed of an input layer, one or more hidden layers, and an output 
layer.  Each layer consists of a number of nodes.  In this analysis, meteorological and 
environmental data are the main parameters fed into the input layer; and the malaria 
cases or other data indicating malaria prevalence are the parameters generated from 
the output layers.  A hidden layer consists of one or more hidden nodes.  The function 
of the hidden layers in a neural network is to map the data structure into a new 
representation that facilitates the optimization of the objective function.  For example, 
if the objective function is to maximize classification accuracy, hidden layers will 
transform the input parameters into functions of the parameters to make the classes 
more readily separable.  Without hidden layers, a neural network may only 
differentiate linearly separable classes.  Because the complexity of the data structure 
and the objective function drive the construction of hidden layers, trial and error is the 
usual approach to determine the numbers of hidden layers and hidden nodes to be 
used.  In fully interconnected networks, weight decay (Bishop, 1996) can be used to 
eliminate nodes and links that are insensitive to the optimization of the objective 
function. 

In the hindcasting (or retrospective forecasting) mode, the model is used to estimate 
the historical cases.  The model’s estimation accuracy can then be determined by 
comparing the model output with the events that took place in the past.  Moreover, 
future malaria cases can be predicted by using forecast parameters as input in the 
forecasting mode. Once a model is trained with past epidemiological data for a region, 
estimates on current malaria endemicity for that region can also be obtained by 
feeding current meteorological and environmental data into the trained model. 

We developed the majority of the processing, modeling, and analysis software in IDL 
and C, including a neural network code in C.  Commercial software used in this study 
includes ENVI/IDL 4.0, Matlab, NeuroSolution, and ArcView 9. 
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4.  V&V METHODS AND RESULTS 
 
For the remainder of this report, we denote the average surface temperature by T, the 
precipitation amount by P, the precipitation amount in the previous month by P-1, the 
relative humidity by H, and vegetation index by V.  The major malaria vector species 
in Thailand include Anopheles dirus, An. minimus, and An. maculatus.  Increase in 
precipitation generally creates more larval habitats.  This leads to an increase in 
mosquito population, and more intense transmissions.   
 
Various neural network architectures were used in this analysis.  The most suitable 
architecture may vary from province to province.  For the ease of discussion, four 
configurations are reported in the following – networks with one hidden layer (HL) 
imbedded with one, two, or three hidden nodes (HN).  The input variables include P, 
P-1, T, H, V. Time, t, is also used as an input parameter to account for trends that are 
independent of meteorological and environmental variables. The trend can be linear or 
nonlinear.  For example, this time factor may reflects the advances in malaria 
detection and treatment methods, improvement in public health support, establishment 
of more plantations, construction of transportation routes and irrigation projects, and 
changes in the influx of refugees and migrant populations.  In general, the time factor 
helps to account for the effects of the changes in non-meteorological and non-
environmental contextual parameters on malaria transmission during the time period 
under study.  A typical network architecture is depicted in Fig. 5. 
 

                              
 
        
                         Figure 5.  A typical neural network architecture. 
 
 
To examine how well these configurations perform for the three most endemic 
provinces – Kanchanaburi, Mae Hong Son, and Tak, the malaria data from 1994 to 
2000 are divided into 6 groups.  Each group consists of 5 years of data for training 
and 1 year of data for testing.  The average over the 6 groups of the root-mean-square 
error between the real cases and the fitted cases normalized by the real cases is used 
as an accuracy measure. 
 
The network for each input data combination was trained using backward propagation 
(Haykin, 1994; Bishop, 1996) for a million epochs or until the training errors 
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converged.  An epoch is a complete round of training over all the input samples.  
Although the training might not have completely converged after a million epochs, 
the decrease in the value of the objective function and the changes in the network 
parameters at this point were negligibly small from one epoch to the next.   
 
Table 1 shows the training and testing results from the neural network.  Configuration 
1 has the simplest architecture.  For example, the average training accuracy is 75±9%, 
and testing accuracy is 67±10% for Kanchanaburi.  Like in other classification 
techniques, the training accuracy is normally higher than the testing accuracy.  This is 
due to the differences in statistical characteristics between the training and testing 
samples.  In the context of the MMS project, it implies that malaria transmission in 
the training and testing samples may respond differently to changes in meteorological 
and environmental parameters, and that some other contextual determinants are not 
stationary. When the temperature parameter is removed from the input (in 
Configuration 2), the accuracy for Kanchanaburi is somewhat reduced to 74±9% and 
62±12% respectively for training and testing.  When another hidden node is included 
in Configuration 3, more complex geometries can be constructed to assure better 
classification.  For example, the average training accuracy becomes 83±6% for 
Kanchanaburi.  The testing accuracy, however, reduces to 57±16%.  This indicates 
that the more complex geometry might have been constructed to accommodate the 
noise components in the training samples, and thus worsened the testing accuracy.  
When one more hidden node is included in Configuration 4, the training accuracy 
continues to increase.  The testing accuracy continues to decrease and becomes erratic 
for Mae Hong Son.  This indicates that the network is over trained.  The changes of 
training errors vs. iterations for Configurations 1 & 4 are shown in Fig. 6. 
 
 

Table 1.  Training and testing accuracy in using neural networks with various 
architecture to assess malaria risks.  

 

 
 
Weight decay (Bishop, 1996) may reduce the effective number of synapses and nodes 
in a fully connected network.  Therefore, it allows more complex architectures with a 
lower degree of freedom.  How this may improve training and prediction accuracy is 
being studied.  We will describe the result in a follow-on report if this technique is 
proved useful. 
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Figure 6.  Training errors decrease as neural networks go through iterations to 
seek optimum parameters. 

 
 
In the formulation described above, training accuracy is expressed as normalized root-
mean-square error by comparing network output with malaria cases.  Because of the 
intrinsic uncertainty in the reported malaria cases due to, for example, inaccurate 
microscopy reading, asymptomatic cases, and unreported cases in transient 
populations, accuracy measures may be defined less stringently in the following way.  
We divided the malaria cases into 20 bands – from zero to 1.5 times of the historical 
maximum.  The classification will be considered correct as long as the fitted data falls 
into the correct band or one of the two adjacent bands.  The upper limit of the highest 
band was set to infinity.  We then apply the architecture used for Configuration 1 in 
Table 1 to the malaria data for the 19 provinces more endemic with malaria between 
1994 and 2000.  Aside from Kanchanaburi, Mae Hong Song, and Tak that were 
selected before, the other 16 provinces are, in alphabetical order, Chanthaburi, Chiang 
Mai, Chymphon, Krabi, Narathiwat, Phetchaburi, Prachinburi, Prachuap Khiri Khan, 
Ranong, Ratchaburi, Rayong, Suphan Buri, Surat Thani, Trat, Ubon Ratchathani, and 
Yala.  The malaria endemicity in the other 57 provinces in Thailand is very low or 
none.  The training accuracy results from these 19 provinces and the width of each 
band are shown in Table 2.  When weighed by the populations, the average training 
accuracy of the 19 provinces is 73%. 

In general, collection of reliable malaria epidemiological data, especially through 
active case detection, is a major undertaking for public health agencies.  Compiling 
and maintaining the records from all levels of hospitals, clinics, mobile units, and 
volunteer outposts also need substantial resources.  Among the developing countries 
that are endemic with malaria, there is a general scarcity of reliable malaria data.  
Taking Indonesia for example, the data gaps are so extensive that we need to develop 
new techniques to analyze the data we could obtain.  Even when surveillance data are 
available, malaria data in some countries are sometimes withheld or manipulated to 
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suit political purposes.  The ability to estimate current malaria endemicity based on 
malaria data from the past is therefore very important. 

Our risk assessment model, once trained, can be used to estimate current or future 
malaria endemicity by feeding the current or the forecasted meteorological parameters 
into the model.  For example, although Thailand has stopped releasing malaria data, 
the current malaria endemicity can still be estimated using our model.  Fig. 7 shows 
the estimated average malaria cases in July 2006 for the 19 most malarious provinces 
based on Thailand’s climatology data from the past 3 years.  Alternatively, the 
observed meteorological data can be used to estimate the current cases. 

 

Table 2.  Training accuracy for the 19 Thailand provinces most endemic 
with malaria using neural networks.  Malaria cases are grouped into bands 
to account for the uncertainty in the reported malaria cases.  Widths of the 
bands expressed in number of malaria cases are also shown. 
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Figure 7.  Current (July 2006) malaria cases estimated by the malaria risk 
assessment model for the 19 Thailand provinces more endemic with malaria. 
 

 
 
 

5.  DATA LIMITATIONS IN V&V 
 
We have shown, through hindcasting, that the neural network model can reasonably 
well model the dependency on meteorological and environmental parameters and 
predict future cases.  The development and V&V of the model, however, are limited 
by the availability of malaria data. 
 
Because the malaria distribution is spatially heterogeneous, it would be desirable if 
malaria data of finer spatial resolution are available.  But unfortunately, we have been 
able only to obtain very limited amount of district level data, which are insufficient 
for developing the malaria risk model.  There is reason to believe, however, that 
higher resolution malaria data will correlate more closely with higher-resolution 
meteorological and environmental data and result in a risk model with higher 
accuracy. 
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To verify the accuracy of predicting malaria endemicity at the present or in the future, 
in general, it is necessary to compare model output with malaria cases of that 
timeframe.  The malaria epidemiological data, however, is generally difficult to 
obtain.  Thailand has stopped releasing the malaria data.  Other developing countries, 
such as Indonesia, are limited by resources and public health capacity to properly 
collect and maintain malaria epidemiological data.  
 
Our collaborators in the Armed Forces, such as AFRIMS and NAMRU2, do 
occasionally conduct active case detections or mass blood surveys when requested by 
the public health agencies in the host countries.  These data, while undoubtedly have 
better quality than the average epidemiological data available in these countries, the 
sample size is usually small due to the limited scope of the surveys.  The geographical 
distribution of the sampling points is also often limited.  In addition, active case 
detection or mass blood survey are usually conducted at locations with ongoing or 
recent outbreaks.  The slide positive rates at these locations are therefore higher than 
the endemicity in the general populations.  Consequently the data may not be 
sufficiently representative for verifying the performance of the MMS risk assessment 
model. 
 
If the official malaria epidemiological data are to become available again in Thailand, 
we would be able to properly test the prediction accuracy of the model.  The model 
needs to be retrained, however, because socioeconomic factors and other contextual 
determinants might have changed appreciably in recent years. 

 

6.  CONCLUSIONS 

Malaria transmission depends on the diverse factors that influence the vectors, 
parasites, human hosts, and the interactions among them.  These factors may include, 
among others, meteorological and environmental condition, the innate and adapted 
immunity of the human hosts, public health system, housing standards, vector control, 
road construction, irrigation projects, and population movements.  The couplings 
among these factors may be so complex that it is difficult to isolate the key factors 
that promote or sustain malaria transmission in an area.   
 
The most apparent determinants are the meteorological and environmental factors, 
such as rainfall, temperature, humidity, and vegetation.  For example, human 
experience has shown that malaria is correlated with the rainy season, and that ENSO 
events may either increase or decrease malaria transmission.  When other factors 
remain more or less constant, the meteorological and environmental conditions can 
indeed be considered the driving factors.  These conditions can be remotely sensed 
using satellites that regularly cover extensive geographical areas.  Therefore, remote 
sensing has been used in recent years for developing malaria early warning systems, 
particularly for Africa.  For the Greater Mekong Subregion, an epicenter of multi-drug 
resistant malaria, there have been few studies to examine the dependency of malaria 
cases on these factors.   
 
We have shown that neural network techniques are a useful approach for modeling 
the dependency of malaria cases on meteorological and environmental parameters.  
Neural network is a vital part of machine or artificial intelligence, which is a 
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discipline to study machine’s ability for learning and adaptation, and exhibition of 
intelligent behaviors.  In general, the neural network techniques are superior to 
generalized linear models, because linearization are subjective and may not be 
optimum. 
 
Thailand has a long border—nearly 3,200 km over land—with Myanmar, Laos, 
Cambodia, and Malaysia as its neighboring countries. Significant populations from 
the neighboring countries have come into Thailand or stayed near the border over the 
last two decades.  Along the Thai–Myanmar border, it is estimated by the World 
Health Organization (WHO) Border Health Program (WHO Thailand, 2005) that at 
the end of 2004, there were approximately 120,000 registered refugees living in 
camps, 400,000 registered migrant workers, and another 500,000 undocumented 
workers.  
 
Taking the Tak Province for example, it is estimated that nearly a third of its 
population are refugees, migrants, or displaced populations. Because of the large 
border-crossing population movement, it may not be surprising that Tak is one of the 
most malaria endemic provinces in Thailand.  Overall, approximately 70% of all 
malaria cases in Thailand occur in the 10 border provinces (WHO Thailand, 2005).  
Due to the limited accessibility of health care, the transient and migrant populations 
expand the human reservoir for malaria transmission. In turn, these populations 
escalate the endemicity among the native Thai population.   The movement of migrant 
population is therefore an important contextual determinant that contributes to malaria 
transmission.  In addition, it confounds the complexity for the prediction of malaria 
transmission intensity based on meteorological and environmental parameters. 
 
We have used surface observed and satellite measured data to examine the 
dependency of malaria transmissions on meteorological and environmental factors.  
The malaria data are in provincial resolution, and the spatial resolution of the 
meteorological and environmental data are from medium to coarse.  In spite of the 
coarse resolution of the malaria data, we have uncovered a reasonable degree of 
dependency on the meteorological and environmental  parameters.  Based on the 
dependency, we can assess the current and future malaria risks.   
 
With the simplest neural network architecture, the average training accuracy is 
approximately 73% among the three leading malarious provinces.  More complex 
architectures will result in a training accuracy approaching 84%.  The average 
hindcasting accuracy is approximately 63% using the simplest (hence most robust) 
architecture.  It should be noted that the training and testing accuracy are not meant to 
be 100%, because the meteorological and environmental parameters are only part of 
the factors that affect malaria transmissions.   
 
Malaria transmission is known to be spatially heterogeneous.  We have nevertheless 
extracted a reasonable amount of dependency on the meteorological and 
environmental parameters using malaria data at coarse resolution.  There is reason to 
believe that we can obtain a more precise meteorological and environmental 
association by using malaria data at higher resolution.   With the current results on 
hand, we will continue to seek to obtain malaria data at lower administrative levels 
(e.g., district or village).  This would allow a more localized response to malaria 
warnings. 
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The risk assessments from the MMS project will allow the U.S. overseas forces to be 
better prepared for malaria prevention and in responding to malaria morbidity.  In the 
Armed Forces, there are other Decision Support Systems similar to GSAT that 
provide risk assessments on infectious diseases.  These systems exchange information 
with one another.  To the best of our knowledge, at least two other decision support 
systems use malaria risk assessments information like what we will provide to GSAT.  
The beneficial returns of NASA data and results will be multiplied as the results from 
the MMS project are shared with other Decision Support Systems. 
 
During peacetime or wartime, U.S. overseas forces work with the local public health 
organizations to reduce disease risks among the general populations.  The outcome of 
the NASA MMS Project will therefore help reduce the morbidity and mortality 
among the local populations.  The risk assessments will also facilitate more targeted 
insecticide and larvicide applications, and therefore reduce the potential damages to 
the environment and the risk of insecticide resistance. 
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ACRONYMS 
 
AFRIMS  Armed Forces Research Institute for Medical Sciences 
AFSOC  Air Force Special Operations Command 
AVHRR  Advanced Very High Resolution Radiometer 
CCD   Cold Cloud Duration 
DAAC   Distributed Active Archive Center 
DST   Decision Support Tool 
ENSO   El Niño Southern Oscillation 
EOS   Earth Observing System 
GIS   Geographic Information System    
GMS   Greater Mekong Subregion 
GPM   Global Precipitation Measurement 
GSAT   Global Situational Awareness Tool 
MMS   Malaria Modeling and Surveillance 
MODIS  Moderate Resolution Imaging Spectroradiometer 
MOPH   Ministry of Public Health (Thailand) 
NAMRU-2  Naval Medical Research Unit-2 
NCAR   National Center for Atmospheric Research 
NCEP   National Centers for Environmental Prediction 
NDVI   Normalized Difference Vegetation Index 
SIESIP   Seasonal-to-Interannual Earth Science Information Partner 
TRMM  Tropical Rainfall Measuring Mission 
V&V   Verification and Validation 
WHO   World Health Organization 
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